雑感等

音楽,数学,語学,その他に関するメモを記す.

Vossのアルゴリズムに関する式変形の過程(フラクショナルブラウン運動の生成)

文献: 本田勝也. フラクタル. 朝倉出版, 2002. pp. 110-112.

ラクショナルブラウン運動の関数を X(x),\, (0\leq x \leq1)を生成する「ヴォスのアルゴリズム」が文献に示されていた.
その中の式変形を詳細に示す.

 X\left(  0 \right) =0,\, X\left(  1 \right) =\delta_{0}, \, (\delta_{0} \sim \text{平均0,分散1の正規分布})
 X \left( \frac{1}{2} \right) = \frac{1}{2} \left\{ X(0)+X(1) \right\} + \delta_{1},\,\left( \delta_{1} \sim \text{平均0,分散$\sigma_{1}^{2}$の正規分布} \right) \hspace{3em}\text{(10.17)}
ただし X(1)-X(0) \delta_1は互いに独立である.

 \langle \left\{  X \left( \frac{1}{2} \right) - X \left(  0 \right)   \right\}^{2} \rangle \hspace{3em}\text{(10.18)左辺}
式(10.17)を代入
 =\langle \left\{  \frac{1}{2} \left\{ X(0)+X(1) \right\} + \delta_{1} - X \left(  0 \right)   \right\}^{2} \rangle
展開
 =\langle \left\{  \frac{1}{2}  X(0) + \frac{1}{2} X(1)  + \delta_{1} - X \left(  0 \right)   \right\}^{2} \rangle
項をまとめる
 =\langle \left\{   \frac{1}{2} X(1) -\frac{1}{2}  X(0)  + \delta_{1}    \right\}^{2} \rangle
 =\langle \left\{   \frac{1}{2} \left\{ X(1) - X(0) \right\} + \delta_{1}    \right\}^{2} \rangle
二乗を展開
 =\langle   \frac{1}{4} \left\{ X(1) - X(0) \right\}^{2} + {\delta_{1}}^{2} +  {\delta_{1}} \left\{ X(1) - X(0) \right\} \rangle
加法性を適用(統計平均と統計の期待値(平均)は同じ?)
 =\langle  \frac{1}{4} \left\{ X(1) - X(0) \right\}^{2} \rangle + \langle {\delta_{1}}^{2} \rangle + \langle  {\delta_{1}} \left\{ X(1) - X(0) \right\} \rangle
 X(1)-X(0) \delta_1は互いに独立だから,積の平均を平均の積に分解
 =\langle  \frac{1}{4} \left\{ X(1) - X(0) \right\}^{2} \rangle + \langle {\delta_{1}}^{2} \rangle + \langle  {\delta_{1}}\rangle  \langle  \ X(1) - X(0) \rangle
正規分布に従う乱数の平均だから   \langle {\delta_{1}}^{2} \rangle = \sigma_{1}^{2}, \,   \langle  {\delta_{1}} \rangle= 0
 =\langle  \frac{1}{4} \left\{ X(1) - X(0) \right\}^{2} \rangle + \sigma_{1}^{2} + 0 \times  \langle  X(1) - X(0) \rangle
 =\langle  \frac{1}{4} \left\{ X(1) - X(0) \right\}^{2} \rangle + \sigma_{1}^{2} \hspace{3em}\text{(10.18)右辺}


他の書籍を読んだ際,統計平均を\langle  \rangleで表したり,ほぼ等しいことを \sim で表したりする記法を知らなかったため,式が理解できないことがあった.
専門分野の表記はよそ者がみると理解できない.